Distribution modulo One and Ratner’s Theorem

نویسنده

  • JENS MARKLOF
چکیده

Contents 1. Introduction 1 2. Randomness of point sequences mod 1 2 2.1. Distribution of gaps 4 2.2. Independent random variables 6 3. mα mod one 7 3.1. Geometry of Γ\G 9 3.2. Dynamics on Γ\G 10 3.3. Mixing and uniform distribution 12 4. √ mα mod one 14 4.1. The case α = 1 15 4.2. Some heuristics in the case α = √ 2 16 5. Ratner's theorem 19 5.1. Limit distributions of translates 19 5.2. Equidistribution, unbounded test functions and diophantine conditions 20 References 23

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outer automorphism groups of some ergodic equivalence relations

Let R a be countable ergodic equivalence relation of type II1 on a standard probability space (X,μ). The group Out R of outer automorphisms of R consists of all invertible Borel measure preserving maps of the space which map R-classes to R-classes modulo those which preserve almost every R-class. We analyze the group Out R for relations R generated by actions of higher rank lattices, providing ...

متن کامل

Syllabus and Reading List for Eskin-kleinbock Course

1. General introduction, Birkhoff’s Ergodic Theorem vs. Ratner’s Theorems on unipotent flows; measure classification implies classification of orbit closures; uniform convergence and the theorem of Dani-Margulis; the statement of the Oppenheim Conjecture. 2. The case of SL(2, R) (the mixing argument). We will be loosely following Ratner’s paper [18]. 3. The classification of invariant measures ...

متن کامل

Unipotent Flows on Products of Sl(2,k)/γ’s

We will give a simplified and a direct proof of a special case of Ratner’s theorem on closures and uniform distribution of individual orbits of unipotent flows; namely, the case of orbits of the diagonally embedded unipotent subgroup acting on SL(2, K)/Γ1 × · · ·×SL(2, K)/Γn, where K is a locally compact field of characteristic 0 and each Γi is a cocompact discrete subgroup of SL(2, K). This sp...

متن کامل

UNIPOTENT FLOWS ON PRODUCTS OF SL(2, K)/Γ’S by

— We will give a simplified and a direct proof of a special case of Ratner’s theorem on closures of individual orbits of unipotent flows; namely, the case of orbits of the diagonally embedded unipotent subgroup acting on SL(2, K)/Γ1 × · · · × SL(2, K)/Γn, where K is a locally compact field of characteristic 0 and each Γi is a cocompact discrete subgroup of SL(2, K). This special case of Ratner’...

متن کامل

On Primitive Roots of Tori: The Case of Function Fields

We generalize Bilharz’s Theorem for Gm to all one-dimensional tori over global function fields of finite constant field. As an application, we also derive an analogue, in the setting of function fields, of a theorem (Chen-Kitaoka-Yu, Roskam) on the distribution of fundamental units modulo primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006